
From Shared Memory to Array Processing
An Overview of Distributed Consistency Models, GPGPUs and Vector Processors

Carlos J. Melegrito
Student — Faculty of Science & Faculty of Information Technology

Monash University
Clayton, VIC, Australia

e-mail: cjmel2@student.monash.edu

Abstract—This report provides an overview and explanation of
three key topics in the field of parallel computing: distributed
memory consistency models, general purpose computing on
graphics processing units, and vector processors.

Parallel computing; memory consistency models; GPGPUs;
vector processors;

I. INTRODUCTION
Parallel computing — a discipline of computer science

and one of the core foundations of modern computing —
involves the computation of data or the execution of multiple
programs across several processors simultaneously. The
following topics covered in this report form a part of the
history of parallel computing, introduced as insights from the
inception of memory consistency models, the invention and
newfound utilization of the GPU to the advancements made
by vector processing.

Distributed (Memory) Consistency Models are
conceptual models used by programmers and systems
designers to understand the semantics of read/write
operations on multi-processor systems with shared memory.
They are used because it makes it easier to understand the
behavior and order of memory operations in a system that
requires concurrent memory access.

General Purpose Computing on GPUs (GPGPUs)
involves passing non-graphical, general computation — such
as raw mathematical data or batch-processing functions —
 from the Central Processing Unit (CPU) to the Graphics
Processing Unit (GPU). Due to the GPU's parallel
architecture, GPUGPUs enables faster processing than a
traditional CPU could do alone — and has paved the way for
many advancements in modern personal computing.

Vector Processors are special-purpose computers that
can process large sets of data concurrently. They are more
powerful than traditional CPUs in the sense that they use less
bandwidth in terms of memory accesses and that its
architecture supports instruction sets suited for vectors.
Vector Processors are used in supercomputers because of
their bulk and highly-parallel processing abilities.

II. DISTRIBUTED CONSISTENCY MODELS

A. Parallel Computing, Distributed Shared Memory and
Memory Consistency Models
One of the biggest advancements in computational

performance is the rise of parallel computing architectures
through the use of distributed systems. Distributed systems
are a collection of independent computers that appear as one
single coherent system to its users. That is, within a
distributed system, multiple CPUs (for example) can be
networked together to spread the workload of compute-
intensive programs across multiple processors.

In the general sense, distributed systems can work either
one of two ways. Either: each CPU in the system — with an
onboard memory — works on its own allocated tasks, then
passes messages around the system. Or: the CPUs share a
single (potentially, virtual) memory address space, work on
their allocated tasks, and then communicate directly via the
shared memory using read/write operations. The latter type
of distributed computing is classified to be using a
Distributed Shared memory (DSM) [1].

The use of a DSM brings with it many advantages — in
particular, the shielding of the programmer from any
send/receive message-passing primitives, thus abstracting the
entire distributed system as one computer. However, due to
the nature of shared memory systems, it becomes complex to
understand the order and behavior of concurrent memory
access.

Figure 1. Two processors operating on a shared memory space

Consider the above diagram. Two processors, P1 and P2,
are connected to a shared memory address and perform two
read and write operations in parallel. Reading downwards,
notice how operations in P1 can happen before, after or even
during the operations in P2. Without a "guide" to determine
the behavior and order of these operations — it can become
problematic to understand how a particular distributed
memory system works.

As such, a programmer may require a high-level model
of understanding the semantics behind shared memory
operations. This conceptual model of determining the
behavior of memory access is known as a Distributed
Memory Consistency Model (or consistency model, in
short). A consistency model provides an interface — or a
"contract" — for programmers and systems designers to
determine the order in which read/write operations will
appear to execute for a system with DSM [2].

B. Different Types of Memory Consistency Models
There are various ways to implement a conceptual model

for systems with DSM. Below are some of the most common
examples of consistency models in use today.

1) Strict Consistency

CONDITIONS
• Any memory read should return the most recent

value written, as per a universal time axis
• All memory operations will appear atomic and

sequential
• Any overlapping operations will appear discretely

ordered

Figure 2. Read/write operations across two processors over a period of

time [3]

The above diagram illustrates Strict Consistency in
action: P1 writes to memory address a, and subsequently, P2
writes to memory address a. P1 then reads from address a,
taking the most-recently written value by P2.

2) Sequential Consistency

CONDITIONS
• The outcome of any execution will be the same no

matter the order of memory operations
• The operations of any individual processor appear in

the order specified by its local program

// Global variables set
x = false
y = false

// In Processor 1
x = true
if (y) {
 … = y
}

// In Processor 2
y = true
if (x) {
 … = x
}

Figure 3. Sample pseudocode showing the interaction between two

processors P1 and P2

In the figure before, the order of memory accesses is
determined by the order in which they were given. That is,
accessing X in P2 is guaranteed to contain the new value that
was previously assigned in P1.

3) Causal Consistency

CONDITIONS
• At a processor, the local order of events is termed

the Causal Order
• A write causally happens before a read is issued by

another processor (if the read operation returns the
value written by the write)

• The transitive closure of the above two conditions is
the Causal Order

Figure 4. Processors P1 and P2 interacting over time [3]

In the above graph, W(x,1) and W(x,2) are considered to
be causally related. This is because R(x,1) happens before
W(x,2). Note: the above notation “W(X,1)” is read as

“Write the value ‘1’ in address X”, and “R(X,1)” is read as
“Read the value ‘1’ from address X”.

4) Pipelined RAM (PRAM) Consistency

CONDITIONS
• Any write operation issued by a processor is seen by

others in the order they were issued
• Write operations from different processors may

appear to other processors has having executed in
different orders

Figure 5. A timeline of two processors P1 and P2 interacting [3]

The timeline above shows that PRAM Consistency
follows a first-in-first-out (FIFO) behavior — hence the term
"pipeline". W(x,1) is done by P1 and as a result any
processor that happens to execute R(x,1) will receive the
same result until a new write operation is done by any other
processor [4].

5) Weak Consistency

CONDITIONS
• All write operations are propagated to other

processes
• All write operations done elsewhere are

synchronized locally
• Access to sync variables are sequentially consistent
• Access to any sync variable is not allowed unless all

write operations have finished
• No data access is allowed until all previous

synchronizations have been performed

Figure 6. Concurrent memory access across four processors, P1 to P4,

over time [4]

The synchronization step S in the above diagram pulls
any new write operations from the other processors.

6) Release Consistency

CONDITIONS
• Two types of synchronization variables are used; the

first of which is Acquire, which indicates that all
write operations from other processors must be
reflected at this point

• And Release, which indicates that any operations
done locally in one processor should be sent to all
other processors

C. Memory Consistency Models in Practice
The ideal consistency model for a particular system using

DSM is one that utilizes performance and is easy to
understand. Performance is usually enhanced by more
complex, lower-level programming — but at the cost of an
intuitive structure or concept of how it should work. Overall
however, the balance between the two when deciding over a
consistency model is dependent upon two factors: the target
application, and the choice of programming easy and
maintainability [5].

Distributed Consistency Models have their uses not only
in small-scale, physically-networked CPUs, but also in many
of today's internet applications. Read/write operations for
applications like these can occur concurrently between a
user's mobile device and a server stationed remotely — all
the while being constantly developed by teams of software
engineers and systems designers. As such, it would have
been incredibly complex to maintain software at this scale if
a consistency model had not been agreed upon [5].

III. GENERAL PURPOSE COMPUTING ON GPUS

A. From Video Games to High-Performance Computing:
A Brief History of GPUs
Ever since their inception as an independent display

processor in the late 1970s, Video Chips — or now more
formally, GPUs — have played an important role in the
advancement of modern computing. Originally developed as
a means to improve the quality and performance of onscreen
computer graphics, GPUs have since made their way to
becoming an integral part of parallel computing [6].

The need for a specialized graphics processor came out
of the limitations of CPUs. CPUs were specifically made to
execute application logic and handle user interaction. But as
graphical user interfaces (and in particular, video games)
surged in popularity, more graphics processing was needed
to be done on top of a CPU's core workload. Memory and
processing power was expensive; thus, the GPU was
invented [7].

Figure 7. 3D Graphics within a game called “Minecraft”

GPUs were designed to compute graphical data very
efficiently. They are not replacements for the CPU —
instead, are seen as an extension for it. The CPU would run
the main application code, passing any graphical
computation to the GPU. This decoupling of processing
responsibility resulted in a visually-pleasing and highly-
interactive user experience. As such, advancements in GPU
technology have since been focused on improving the
performance and quality of computer graphics [7].

It wasn't until the early 2000s that another use for GPUs
had been discovered. It was found that if raw mathematical
data (in particular, matrices, vectors or large arrays) were
translated into graphical data, the GPU could perform a
much faster computation over it than any traditional CPU.
Furthermore, with the introduction of APIs like OpenCL or
NVIDIA's Compute Unified Device Architecture (CUDA),
raw data no longer has to be converted and programs can be
passed directly to the GPU, making it easier to use [8].

The speed, performance and efficiency of using non-
graphical, General Purpose Computing on GPUs has paved
the way for advancements in personal computing and many
more modern, practical uses.

B. How It Works: GPGPUs
Unlike CPUs, GPUs were built to process mass amounts

of individual data in parallel. In the graphics processing
context, if a CPU was tasked to modify a grid of pixels, it
would have to pass over each pixel sequentially, and if done
trivially, through a for loop. On the other hand, a GPU
would instead compute all (if not, most of) the pixels at the
exact same time. In the context of general computing, this
parallelization can be used to batch-compute data [9].

Figure 8. The Graphics Pipeline [9]

The process by which data is passed to the GPU for
computation is known as the Graphics Pipeline. From a high-
level perspective: graphical data is sent from an Application
in the CPU, communicated through the Host (an interface
between the CPU and the GPU), then the data is computed
— sometimes combined with data stored in the Frame
Buffer (video memory). The resulting data is a set of
vertices in 3D Space, converted to triangles through
Geometry that becomes a 3D model. This scene is then
mapped onto a 2D projection of pixels through
Rasterization, rendered with more detail (Fragment) and
finally, the image is prepared for display via the Raster
Operation (ROP) [9].

In the context of general computing, the most useful
aspect of the above Graphics Pipeline is a process that
happens within the GPU called Shading. Shaders —
programs that add aesthetic value to a 3D image through
lighting, color and other image effects — can be
programmed in a way to produce a variety of different
rasterizations of a 3D image. For example, Shaders can be
used to make a 3D sphere look matte, shiny or even made of
gold. Beyond visual utility however, Shaders can be
programmed to process non-graphical data — that is, general
computation [10].

Figure 9. Summing a matrix of values by “Resizing” it

Take for example the task of summing an incredibly
large array of data. Done sequentially, the complexity of a
trivial algorithm for this would take linear time. However, if
the array was converted into an image format — a grid of
pixels where each pixel holds the corresponding value of an
item in the array (which is a large matrix) — it can then be
processed in parallel through the GPU. In this case, a Shader
that specializes in image resizing can be re-programmed to
sum the values of any 4 adjacent "pixels" (cells in the matrix)
into one "pixel" — all at the same time. The GPU would
then run through in parallel the entire matrix again, summing
any 4 adjacent "pixels" into one — and so on, until
eventually ending up with a single "pixel" that holds the
value of the final sum.

for pixel in grid {
 modify(pixel)
}

Figure 10. Code written the traditional way, as a for loop

kernel function (pixel, grid) {
 modify(pixel)
}

Figure 11. The same code written in the form of a kernel — a small,

reusable program used by individual processes concurrently

Although the above example was simple, the process of
having to convert raw data into a format that the GPU can
compute becomes more cumbersome as complexity
increases. Because of this, the above traditional method of
Shader programming has been improved by the more
modern technique of simply running the code directly on the
GPU via the use of APIs. An example of this is the task of
finding an element in a non-sorted array: code could simply
be written to compare each element in the 1-dimensional
array with the query all in parallel. If the element in the array
does not match the query, it is ignored, otherwise, its index is
stored and passed as part of the result.

#include <stdio.h>
#include <cuda.h>

// Initialise global kernel function
__global__void helloWorld(char*);

// Function to run
int main(int argc, char** argv) {

 // Prepare the string to print
 int i;
 char str[] = “Hello World!”;

 // Iterate over the string
 for (i=0; i<12; i++) {
 str[i] = str[i] – i;
 }

 // Prepare the string for parallel

processing
char *d_str;
size_t size = sizeof(str);

 // Use CUDA API to allocate string to

memory
cudaMalloc((void**)&d_str, size);
cudaMemcpy(d_str, str, size,

cudaMemcpyHostToDevice);
dim3 dimGrid(2);
dim3 dimBlock(6);

// Pass the string to the GPU
helloWorld<<<dimGrid,

dimBlock>>>(d_str);

 // Deallocate memory

cudaFree(d_str);

 // Print result

printf(“%s\n”, str);

return 0;
}

// Define the kernel
__global__void helloWorld(char* str) {
 int idx = blockIdx.x * blockDim.x +

threadIdx.x;
 str[idx] = str[idx] + idx;
}

Figure 12. Sample C code written with the easy-to-use CUDA API

C. Art, Science and More: Applications of GPGPUs
The bulk, parallel processing capabilities introduced by

GPGPUs has introduced the possibility for more high-
performance computing per individual computer. This idea
of using the graphics card for more than just graphics
processing has many practical uses today, including
advancements in consumer software, data processing in
fields like Astrophysics, Chemistry and Medicine, and even
for business use such as in data centers for load balancing
[11].

Figure 13. Live “8-bit” camera filters in an iOS app called “BitCam” made

possible by GPGPUs

In consumer software, due to mass-production of more
advanced GPUs and the introduction of easy-to-use, high-
level APIs like Apple's Metal that enable for GPGPUs, users
now have access to features and programs once deemed
exclusive to supercomputers — such as image noise
reduction, live 3D filters and audio processing.

In the science and medicine industry, clusters of GPUs
added on top of CPUs are used by supercomputers to batch-
process terabytes of raw mathematical data: from physical
calculations (in the form of vectors or matrices) for
simulating the movement of distant stars to analyzing protein
folding (generating various forms of a chemical in parallel).

D. The Future of GPGPUs: What’s Next?
Recent advancements include more easy-to-use APIs

such as WebGL (using GPGPUs via the web) and NVIDIA's
research into Echelon — a new GPU architecture
specifically geared towards general computing that stores
more memory than a traditional GPU. In terms of future
applications, GPGPUs will see more usage in artificial

intelligence (processing more input through parallelism) and
in the science research industry — in particular, using
asynchronous computation to produce a 1:1 mapping of
every molecule in the human brain [12].

By Moore's Law, GPUs (and CPUs in turn) will become
more efficient, performant and will continue to provide many
more practical uses with every advancement of the
technology.

IV. VECTOR PROCESSORS

A. Scalar versus Vector Processors
Consider the task of having to add together each element

of two very large one-dimensional arrays. The goal is to
produce a single array of the same length in which each
element in the final array is a sum of the elements from the
other two arrays in the same position. To carry out this task,
a traditional CPU would have to iterate over each element of
both arrays one at a time, store the resulting sum in memory,
then continue to build the final array step-by-step until it is
ready to be returned.

function combine(array_1, array_2) {
result_array = []
for (i=0; i<len(array_1); i++) {

 sum = array_1[i] + array_2[i]
 result_array.append(sum)

}
return result_array

}

Figure 14. A trivial solution to the above problem written in pseudocode

Although trivial and intuitive, this sequential — scalar —
 way of processing data is very slow. Even with the fact that
this task can be done more efficiently and can be
accomplished in nanoseconds on today's more modern
CPUs, the process still takes linear time complexity.
Furthermore, this specific task also requires a lot of memory
accesses in terms of fetching instructions, which accumulates
on top of the total processing time [13].

The limitations of scalar CPUs such as the problems
mentioned above gave rise to the invention of Vector
Processors. Also known as Array Processors, Vector
Processors work by computing multiple sets of data in
parallel. In other words, they are processors that can operate
on an entire vector in one instruction. To put this in context,
a Vector Processor could accomplish the aforementioned
task of combining two arrays in just a handful of steps.

function combine(array_1, array2) {
 return array_1 + array_2
}

Figure 15. The same solution in pseudocode, except written for Vector

Processors in the form of a kernel

Vector Processors also reduce the memory access
bandwidth because the number of instructions fetched are

less. Moreover, Vector Processors access memory one block
at a time, resulting in lower memory latency. Designed in the
70s by the supercomputing pioneer, Seymour Cray, Vector
Processors were built to more efficiently operate on data that
can be executed in a highly — or even completely — parallel
manner [14].

B. Vector Processor Architecture
Vector Processors work like traditional CPUs except

operate with a different set of instructions (called Vector
Instructions) and parallelize operations either on the
instruction level (Instruction-Level Parallelism or ILP),
thread level (Thread-Level Parallelism or TLP) or even on
the data level (Vector Data Parallelism or DP). Because of
this, programs for Vector Processors are written such that the
data can be processed concurrently or — if the program
happens to be large enough — divided into smaller ones
which are then solved simultaneously [14].

Figure 16. Vector Processor Architecture [14]

From the Main Memory, data is loaded into the Vector
Registers which operate like FIFO queues. Each register can
hold between 50 to 100 floating point values. The instruction
set for Vector Processors loads a vector register from a
location in memory, then performs operations on elements in
each register, then stores the data back to memory from the
registers.

TABLE I. EXAMPLE VMIPS INSTRUCTIONS [13]

Instruction Operands Operation Comment
ADDV.D V1, V2, V3 V1 = V2 + V3 Vector + Vector
ADDSV.D V1, F0, V2 V1 = F0 + V2 Scalar + Vector
MULV.D V1, V2, V3 V1 = V2 × V3 Vector × Vector
MULSV.D V1, F0, V2 V1 = F0 × V2 Scalar × Vector
SUBV.D V1, V3, V3 V1 = V2 – V3 Vector – Vector
SUBSV.D V1, F0, V2 V1 = F0 – V2 Scalar – Vector
DIVV.D V1, V2, V3 V1 = V2 ÷ V3 Vector ÷ Vector
DVIVSV.D V1, F0, V2 V1 = F0 ÷ V2 Scalar ÷ Vector
DVIVVS.D V1, V2, F0 V1 = V2 ÷ F0 Vector ÷ Scalar
LV V1, R1 Load vector

register v1 from

memory
starting at
address R1

SV R1, V1 Store vector
register V1 into
memory
starting at
address R1

LVWS V1, (R1, R2) Load V1 from
address at R1
and stride at R2
as R1 + i × R2

SVWS (R1, R2), V1 Store with
stride

LVI V1, (R1 + V2) Load V1 with
vector whose
elements are at
R1 + V2(i)

SVI (R1+V2), V1 Store V1 to a
vector whose
elements are
R1+V2(i)

CVI V1, R1 Create an index
vector by
storing values i
× R1 into V1

Although vector instructions are dependent on the type of

processor used, there is a general set of operations used by
all vector processors that are specific to vector operations.
The table above lists some of the most common sets of
vector instructions used in for the VMIPS processor
developed in 2001. Note: the VMIPS processor contains
Floating Point Multiply, Add and Divide components, an
Integer Add/Shift and a Logical component.

; Load vector from memory
LV V1, R1
; Multiply this vector by a scalar
; And store result as V2
MULVS.D V2, V1, F0
; Load another vector from memory
LV V3, R2
; Add and store result as V4
ADDV.D V4, V2, V3
; Store the result back into memory
SV R3, V4

Figure 17. Sample code written in the VMIPS Instruction Set

C. Vector Processors In Use
Because of their capacity to run large instruction sets in

parallel computers, vector processors are ideal for processing
or comparing large sets of data. For example, algorithms
used for string processing and cryptography can be used for
pattern recognition in biomedical research, such as finding
repetitions in DNA or RNA sequences [16].

Vector Processors are not limited to data-processing
supercomputers — its use has found its way into consumer
electronics like video game consoles. The Cell Processor,
developed by Sony in collaboration with Toshiba, is hybrid
of vector-scalar processor used in the PlayStation 3 [17].

V. CONCLUSIONS
A memory consistency model for a system with

distributed shared memory provides an overview of how
memory operations should appear to behave. Some of these
consistency models can be very strict — that is, adhere to
one specific condition — or relaxed — which takes
advantage of abstractions, such as synchronization, to
determine how and when shared memory should be
accessed.

General Purpose Computing on GPUs work by passing
large amounts of individual data from the CPU to the GPU
via the Graphics Pipeline and then parallelizing the
computation. This insight of passing non-graphical, general
computation has advanced the mere GPU from a simple
extension for processing onscreen graphics, to become the
more versatile and high-performance processor used in a lot
of today's modern computing.

Unlike traditional scalar CPUs, Vector Processors are
parallel computers designed to operate on an entire vector in
one instruction. They reduce the fetch and decode bandwidth
when accessing instructions in memory, and their
architecture supports instruction sets that operate on vectors
stored in FIFO registers. Originally founded by Seymour
Cray in the early 70s, Vector Processors have since found
their way to modern supercomputers and consumer
electronics.

REFERENCES
[1] G. Kourosh. "Memory Consistency Models for Shared-Memory

Multiprocessors," Standford University Technical Report CSL-TR-
95-685. 1995.

[2] J. Protic, I. Tartalja and M. Tomasevic, "Memory consistency models
for shared memory multiprocessors and DSM systems," Proceedings
of 8th Mediterranean Electrotechnical Conference on Industrial
Applications in Power Systems, Computer Science and
Telecommunications (MELECON 96), Bari, 1996, pp. 1112-1115
vol.2.

[3] G. Radhika, et al. "Consistency Models in Distributed Shared
Memory Systems," International Journal of Computer Science and
Mobile Computing, Vol. 3, Issue 9, pg. 196-201. 2014.

[4] A. Kshemkalyani, et. al. "Distributed Shared Memory," Distributed
Computing: Principles, Algorithms and Systems, Cambridge
University Press. 2008.

[5] J. Protic, M. Tomasevic and V. Milutinovic, "Distributed shared
memory: concepts and systems," in IEEE Parallel & Distributed
Technology: Systems & Applications, vol. 4, no. 2, pp. 63-71, 1996.

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C.
Phillips, "GPU Computing," in Proceedings of the IEEE, vol. 96, no.
5, pp. 879-899, May 2008.

[7] H. Gamaarachchi, M. Fawsan, F. Fasna and D. Elkaduwe, "User-
friendly interface for GPGPU programming," 2017 6th National
Conference on Technology and Management (NCTM), Malabe, Sri
Lanka, 2017, pp. 99-104.

[8] NVIDIA. (2017). What Is GPU-Accelerated Computing? [Webpage].
Available http://www.nvidia.com/object/what-is-gpu-computing.html

[9] L. Wei. (2005). A Crash Course on Programmable Graphics
Hardware [PDF]. Available
http://graphics.stanford.edu/~liyiwei/courses/GPU/paper/paper.pdf

[10] W. Mark, R. Glanville, et al. "A system for programming graphics
hardware in a c-like language", ACM Trans. Graph. 22, 3, 896-907.
2003.

[11] M. Harris. (2005). General-purpose computation using graphics
hardware [Website]. Available http://www.gpgpu.org/

[12] F. James and M. Steve. "Using Multiple Graphics Cards as a General
Purpose Parallel Computer : Applications to Computer Vision,"
University of Toronto, Department of Electircal and Computer
Engineering, Canada. 2004.

[13] A. Eman, et al. (2012). Vector Processors [PDF]. Available
https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf

[14] J. Hennessy, et al. "Computer Architecture, A Quantitative
Approach," Morgan Kaufmann. 1990.

[15] R. Kirchner and U. Kulisch, "Arithmetic for vector processors," 1987
IEEE 8th Symposium on Computer Arithmetic (ARITH), Como,
Italy, 1987, pp. 256-269.

[16] P. David. (1998). Lecture 7: Vector Processing [PDF]. Available
https://people.eecs.berkeley.edu/~pattrsn/252S98/Lec07-vector.pdf

[17] A. Brian, et al. (2002). Vector Processors [PPT]. Available
www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.pp

