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Abstract—This report provides an overview and explanation of 
three key topics in the field of parallel computing: distributed 
memory consistency models, general purpose computing on 
graphics processing units, and vector processors. 
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I.  INTRODUCTION 
Parallel computing — a discipline of computer science 

and one of the core foundations of modern computing — 
involves the computation of data or the execution of multiple 
programs across several processors simultaneously. The 
following topics covered in this report form a part of the 
history of parallel computing, introduced as insights from the 
inception of memory consistency models, the invention and 
newfound utilization of the GPU to the advancements made 
by vector processing. 

Distributed (Memory) Consistency Models are 
conceptual models used by programmers and systems 
designers to understand the semantics of read/write 
operations on multi-processor systems with shared memory. 
They are used because it makes it easier to understand the 
behavior and order of memory operations in a system that 
requires concurrent memory access. 

General Purpose Computing on GPUs (GPGPUs) 
involves passing non-graphical, general computation — such 
as raw mathematical data or batch-processing functions —
 from the Central Processing Unit (CPU) to the Graphics 
Processing Unit (GPU). Due to the GPU's parallel 
architecture, GPUGPUs enables faster processing than a 
traditional CPU could do alone — and has paved the way for 
many advancements in modern personal computing. 

Vector Processors are special-purpose computers that 
can process large sets of data concurrently. They are more 
powerful than traditional CPUs in the sense that they use less 
bandwidth in terms of memory accesses and that its 
architecture supports instruction sets suited for vectors. 
Vector Processors are used in supercomputers because of 
their bulk and highly-parallel processing abilities. 

II. DISTRIBUTED CONSISTENCY MODELS 

A. Parallel Computing, Distributed Shared Memory and 
Memory Consistency Models 
One of the biggest advancements in computational 

performance is the rise of parallel computing architectures 
through the use of distributed systems. Distributed systems 
are a collection of independent computers that appear as one 
single coherent system to its users. That is, within a 
distributed system, multiple CPUs (for example) can be 
networked together to spread the workload of compute-
intensive programs across multiple processors. 

In the general sense, distributed systems can work either 
one of two ways. Either: each CPU in the system — with an 
onboard memory — works on its own allocated tasks, then 
passes messages around the system. Or: the CPUs share a 
single (potentially, virtual) memory address space, work on 
their allocated tasks, and then communicate directly via the 
shared memory using read/write operations. The latter type 
of distributed computing is classified to be using a 
Distributed Shared memory (DSM) [1]. 

The use of a DSM brings with it many advantages — in 
particular, the shielding of the programmer from any 
send/receive message-passing primitives, thus abstracting the 
entire distributed system as one computer. However, due to 
the nature of shared memory systems, it becomes complex to 
understand the order and behavior of concurrent memory 
access. 

 

 
Figure 1.  Two processors operating on a shared memory space 



Consider the above diagram. Two processors, P1 and P2, 
are connected to a shared memory address and perform two 
read and write operations in parallel. Reading downwards, 
notice how operations in P1 can happen before, after or even 
during the operations in P2. Without a "guide" to determine 
the behavior and order of these operations — it can become 
problematic to understand how a particular distributed 
memory system works. 

As such, a programmer may require a high-level model 
of understanding the semantics behind shared memory 
operations. This conceptual model of determining the 
behavior of memory access is known as a Distributed 
Memory Consistency Model (or consistency model, in 
short). A consistency model provides an interface — or a 
"contract" — for programmers and systems designers to 
determine the order in which read/write operations will 
appear to execute for a system with DSM [2]. 

B. Different Types of Memory Consistency Models 
There are various ways to implement a conceptual model 

for systems with DSM. Below are some of the most common 
examples of consistency models in use today. 

 
1) Strict Consistency 

CONDITIONS 
• Any memory read should return the most recent 

value written, as per a universal time axis 
• All memory operations will appear atomic and 

sequential 
• Any overlapping operations will appear discretely 

ordered 
 

 
Figure 2.  Read/write operations across two processors over a period of 

time [3] 

The above diagram illustrates Strict Consistency in 
action: P1 writes to memory address a, and subsequently, P2 
writes to memory address a. P1 then reads from address a, 
taking the most-recently written value by P2. 

 
 
 
 
 
 
 

2) Sequential Consistency 

CONDITIONS 
• The outcome of any execution will be the same no 

matter the order of memory operations 
• The operations of any individual processor appear in 

the order specified by its local program 
 

// Global variables set 
x = false 
y = false 
 
// In Processor 1 
x = true 
if (y) { 
 … = y 
} 
 
// In Processor 2 
y = true 
if (x) { 
 … = x 
} 

 
Figure 3.  Sample pseudocode showing the interaction between two 

processors P1 and P2 

In the figure before, the order of memory accesses is 
determined by the order in which they were given. That is, 
accessing X in P2 is guaranteed to contain the new value that 
was previously assigned in P1. 

 
3) Causal Consistency 

CONDITIONS 
• At a processor, the local order of events is termed 

the Causal Order 
• A write causally happens before a read is issued by 

another processor (if the read operation returns the 
value written by the write) 

• The transitive closure of the above two conditions is 
the Causal Order 
 

 
Figure 4.  Processors P1 and P2 interacting over time [3] 

In the above graph, W(x,1) and W(x,2) are considered to 
be causally related. This is because R(x,1) happens before 
W(x,2). Note: the above notation “W(X,1)” is read as 



“Write the value ‘1’ in address X”, and “R(X,1)” is read as 
“Read the value ‘1’ from address X”. 

 
4) Pipelined RAM (PRAM) Consistency 

CONDITIONS 
• Any write operation issued by a processor is seen by 

others in the order they were issued 
• Write operations from different processors may 

appear to other processors has having executed in 
different orders 

 

 
Figure 5.  A timeline of two processors P1 and P2 interacting [3] 

The timeline above shows that PRAM Consistency 
follows a first-in-first-out (FIFO) behavior — hence the term 
"pipeline". W(x,1) is done by P1 and as a result any 
processor that happens to execute R(x,1) will receive the 
same result until a new write operation is done by any other 
processor [4]. 

 
5) Weak Consistency 

CONDITIONS 
• All write operations are propagated to other 

processes 
• All write operations done elsewhere are 

synchronized locally 
• Access to sync variables are sequentially consistent 
• Access to any sync variable is not allowed unless all 

write operations have finished 
• No data access is allowed until all previous 

synchronizations have been performed 
 

 
Figure 6.  Concurrent memory access across four processors, P1 to P4, 

over time [4] 

The synchronization step S in the above diagram pulls 
any new write operations from the other processors. 

 
6) Release Consistency 

CONDITIONS 
• Two types of synchronization variables are used; the 

first of which is Acquire, which indicates that all 
write operations from other processors must be 
reflected at this point 

• And Release, which indicates that any operations 
done locally in one processor should be sent to all 
other processors 
 

C. Memory Consistency Models in Practice 
The ideal consistency model for a particular system using 

DSM is one that utilizes performance and is easy to 
understand. Performance is usually enhanced by more 
complex, lower-level programming — but at the cost of an 
intuitive structure or concept of how it should work. Overall 
however, the balance between the two when deciding over a 
consistency model is dependent upon two factors: the target 
application, and the choice of programming easy and 
maintainability [5]. 

Distributed Consistency Models have their uses not only 
in small-scale, physically-networked CPUs, but also in many 
of today's internet applications. Read/write operations for 
applications like these can occur concurrently between a 
user's mobile device and a server stationed remotely — all 
the while being constantly developed by teams of software 
engineers and systems designers. As such, it would have 
been incredibly complex to maintain software at this scale if 
a consistency model had not been agreed upon [5]. 

 

III. GENERAL PURPOSE COMPUTING ON GPUS 

A. From Video Games to High-Performance Computing: 
A Brief History of GPUs 
Ever since their inception as an independent display 

processor in the late 1970s, Video Chips — or now more 
formally, GPUs — have played an important role in the 
advancement of modern computing. Originally developed as 
a means to improve the quality and performance of onscreen 
computer graphics, GPUs have since made their way to 
becoming an integral part of parallel computing [6]. 

The need for a specialized graphics processor came out 
of the limitations of CPUs. CPUs were specifically made to 
execute application logic and handle user interaction. But as 
graphical user interfaces (and in particular, video games) 
surged in popularity, more graphics processing was needed 
to be done on top of a CPU's core workload. Memory and 
processing power was expensive; thus, the GPU was 
invented [7]. 

 



 
 

Figure 7.  3D Graphics within a game called “Minecraft” 

GPUs were designed to compute graphical data very 
efficiently. They are not replacements for the CPU — 
instead, are seen as an extension for it. The CPU would run 
the main application code, passing any graphical 
computation to the GPU. This decoupling of processing 
responsibility resulted in a visually-pleasing and highly-
interactive user experience. As such, advancements in GPU 
technology have since been focused on improving the 
performance and quality of computer graphics [7]. 

It wasn't until the early 2000s that another use for GPUs 
had been discovered. It was found that if raw mathematical 
data (in particular, matrices, vectors or large arrays) were 
translated into graphical data, the GPU could perform a 
much faster computation over it than any traditional CPU. 
Furthermore, with the introduction of APIs like OpenCL or 
NVIDIA's Compute Unified Device Architecture (CUDA), 
raw data no longer has to be converted and programs can be 
passed directly to the GPU, making it easier to use [8]. 

The speed, performance and efficiency of using non-
graphical, General Purpose Computing on GPUs has paved 
the way for advancements in personal computing and many 
more modern, practical uses. 

B. How It Works: GPGPUs 
Unlike CPUs, GPUs were built to process mass amounts 

of individual data in parallel. In the graphics processing 
context, if a CPU was tasked to modify a grid of pixels, it 
would have to pass over each pixel sequentially, and if done 
trivially, through a for loop. On the other hand, a GPU 
would instead compute all (if not, most of) the pixels at the 
exact same time. In the context of general computing, this 
parallelization can be used to batch-compute data [9]. 
 

 
Figure 8.  The Graphics Pipeline [9] 

The process by which data is passed to the GPU for 
computation is known as the Graphics Pipeline. From a high-
level perspective: graphical data is sent from an Application 
in the CPU, communicated through the Host (an interface 
between the CPU and the GPU), then the data is computed 
— sometimes combined with data stored in the Frame 
Buffer (video memory). The resulting data is a set of 
vertices in 3D Space, converted to triangles through 
Geometry that becomes a 3D model. This scene is then 
mapped onto a 2D projection of pixels through 
Rasterization, rendered with more detail (Fragment) and 
finally, the image is prepared for display via the Raster 
Operation (ROP) [9]. 

In the context of general computing, the most useful 
aspect of the above Graphics Pipeline is a process that 
happens within the GPU called Shading. Shaders — 
programs that add aesthetic value to a 3D image through 
lighting, color and other image effects — can be 
programmed in a way to produce a variety of different 
rasterizations of a 3D image. For example, Shaders can be 
used to make a 3D sphere look matte, shiny or even made of 
gold. Beyond visual utility however, Shaders can be 
programmed to process non-graphical data — that is, general 
computation [10]. 
 

 
Figure 9.  Summing a matrix of values by “Resizing” it 

Take for example the task of summing an incredibly 
large array of data. Done sequentially, the complexity of a 
trivial algorithm for this would take linear time. However, if 
the array was converted into an image format — a grid of 
pixels where each pixel holds the corresponding value of an 
item in the array (which is a large matrix) — it can then be 
processed in parallel through the GPU. In this case, a Shader 
that specializes in image resizing can be re-programmed to 
sum the values of any 4 adjacent "pixels" (cells in the matrix) 
into one "pixel" — all at the same time. The GPU would 
then run through in parallel the entire matrix again, summing 
any 4 adjacent "pixels" into one — and so on, until 
eventually ending up with a single "pixel" that holds the 
value of the final sum. 

 
 
 
 
 
 
 



for pixel in grid { 
 modify(pixel) 
} 
 

Figure 10.  Code written the traditional way, as a for loop 

kernel function (pixel, grid) { 
 modify(pixel) 
} 

 
Figure 11.  The same code written in the form of a kernel — a small, 

reusable program used by individual processes concurrently 

Although the above example was simple, the process of 
having to convert raw data into a format that the GPU can 
compute becomes more cumbersome as complexity 
increases. Because of this, the above traditional method of 
Shader programming has been improved by the more 
modern technique of simply running the code directly on the 
GPU via the use of APIs. An example of this is the task of 
finding an element in a non-sorted array: code could simply 
be written to compare each element in the 1-dimensional 
array with the query all in parallel. If the element in the array 
does not match the query, it is ignored, otherwise, its index is 
stored and passed as part of the result. 
 

#include <stdio.h> 
#include <cuda.h> 
 
// Initialise global kernel function 
__global__void helloWorld(char*); 
 
// Function to run 
int main(int argc, char** argv) { 
 
 // Prepare the string to print 
 int i; 
 char str[] = “Hello World!”; 
 
 // Iterate over the string 
 for (i=0; i<12; i++) { 
  str[i] = str[i] – i; 
 } 
 
 // Prepare the string for parallel 

processing 
char *d_str; 
size_t size = sizeof(str); 

 
 // Use CUDA API to allocate string to 

memory 
cudaMalloc((void**)&d_str, size); 
cudaMemcpy(d_str, str, size, 

cudaMemcpyHostToDevice); 
dim3 dimGrid(2); 
dim3 dimBlock(6); 
 
// Pass the string to the GPU 
helloWorld<<<dimGrid, 

dimBlock>>>(d_str); 
 
 // Deallocate memory 

cudaFree(d_str); 
 
 // Print result 

printf(“%s\n”, str); 
 

return 0; 
} 
 
// Define the kernel 
__global__void helloWorld(char* str) { 
 int idx = blockIdx.x * blockDim.x + 

threadIdx.x; 
 str[idx] = str[idx] + idx; 
} 
 
Figure 12.  Sample C code written with the easy-to-use CUDA API 

C. Art, Science and More: Applications of GPGPUs 
The bulk, parallel processing capabilities introduced by 

GPGPUs has introduced the possibility for more high-
performance computing per individual computer. This idea 
of using the graphics card for more than just graphics 
processing has many practical uses today, including 
advancements in consumer software, data processing in 
fields like Astrophysics, Chemistry and Medicine, and even 
for business use such as in data centers for load balancing 
[11]. 

 

 
Figure 13.  Live “8-bit” camera filters in an iOS app called “BitCam” made 

possible by GPGPUs 

In consumer software, due to mass-production of more 
advanced GPUs and the introduction of easy-to-use, high-
level APIs like Apple's Metal that enable for GPGPUs, users 
now have access to features and programs once deemed 
exclusive to supercomputers — such as image noise 
reduction, live 3D filters and audio processing. 

In the science and medicine industry, clusters of GPUs 
added on top of CPUs are used by supercomputers to batch-
process terabytes of raw mathematical data: from physical 
calculations (in the form of vectors or matrices) for 
simulating the movement of distant stars to analyzing protein 
folding (generating various forms of a chemical in parallel). 

D. The Future of GPGPUs: What’s Next? 
Recent advancements include more easy-to-use APIs 

such as WebGL (using GPGPUs via the web) and NVIDIA's 
research into Echelon — a new GPU architecture 
specifically geared towards general computing that stores 
more memory than a traditional GPU. In terms of future 
applications, GPGPUs will see more usage in artificial 



intelligence (processing more input through parallelism) and 
in the science research industry — in particular, using 
asynchronous computation to produce a 1:1 mapping of 
every molecule in the human brain [12]. 

By Moore's Law, GPUs (and CPUs in turn) will become 
more efficient, performant and will continue to provide many 
more practical uses with every advancement of the 
technology. 

 

IV. VECTOR PROCESSORS 

A. Scalar versus Vector Processors 
Consider the task of having to add together each element 

of two very large one-dimensional arrays. The goal is to 
produce a single array of the same length in which each 
element in the final array is a sum of the elements from the 
other two arrays in the same position. To carry out this task, 
a traditional CPU would have to iterate over each element of 
both arrays one at a time, store the resulting sum in memory, 
then continue to build the final array step-by-step until it is 
ready to be returned. 
 

function combine(array_1, array_2) { 
result_array = [] 
for (i=0; i<len(array_1); i++) { 

  sum = array_1[i] + array_2[i] 
  result_array.append(sum) 

} 
return result_array 

} 
 

Figure 14.  A trivial solution to the above problem written in pseudocode 

Although trivial and intuitive, this sequential — scalar —
 way of processing data is very slow. Even with the fact that 
this task can be done more efficiently and can be 
accomplished in nanoseconds on today's more modern 
CPUs, the process still takes linear time complexity. 
Furthermore, this specific task also requires a lot of memory 
accesses in terms of fetching instructions, which accumulates 
on top of the total processing time [13]. 

The limitations of scalar CPUs such as the problems 
mentioned above gave rise to the invention of Vector 
Processors. Also known as Array Processors, Vector 
Processors work by computing multiple sets of data in 
parallel. In other words, they are processors that can operate 
on an entire vector in one instruction. To put this in context, 
a Vector Processor could accomplish the aforementioned 
task of combining two arrays in just a handful of steps. 

 
function combine(array_1, array2) { 
 return array_1 + array_2 
} 

 
Figure 15.  The same solution in pseudocode, except written for Vector 

Processors in the form of a kernel 

Vector Processors also reduce the memory access 
bandwidth because the number of instructions fetched are 

less. Moreover, Vector Processors access memory one block 
at a time, resulting in lower memory latency. Designed in the 
70s by the supercomputing pioneer, Seymour Cray, Vector 
Processors were built to more efficiently operate on data that 
can be executed in a highly — or even completely — parallel 
manner [14]. 

B. Vector Processor Architecture 
Vector Processors work like traditional CPUs except 

operate with a different set of instructions (called Vector 
Instructions) and parallelize operations either on the 
instruction level (Instruction-Level Parallelism or ILP), 
thread level (Thread-Level Parallelism or TLP) or even on 
the data level (Vector Data Parallelism or DP). Because of 
this, programs for Vector Processors are written such that the 
data can be processed concurrently or — if the program 
happens to be large enough — divided into smaller ones 
which are then solved simultaneously [14]. 

 
 
 

 
Figure 16.  Vector Processor Architecture [14] 

From the Main Memory, data is loaded into the Vector 
Registers which operate like FIFO queues. Each register can 
hold between 50 to 100 floating point values. The instruction 
set for Vector Processors loads a vector register from a 
location in memory, then performs operations on elements in 
each register, then stores the data back to memory from the 
registers. 

TABLE I.  EXAMPLE VMIPS INSTRUCTIONS [13] 

Instruction Operands Operation Comment 
ADDV.D V1, V2, V3 V1 = V2 + V3 Vector + Vector 
ADDSV.D V1, F0, V2 V1 = F0 + V2 Scalar + Vector 
MULV.D V1, V2, V3 V1 = V2 × V3 Vector × Vector 
MULSV.D V1, F0, V2 V1 = F0 × V2 Scalar × Vector 
SUBV.D V1, V3, V3 V1 = V2 – V3 Vector – Vector 
SUBSV.D V1, F0, V2 V1 = F0 – V2 Scalar – Vector 
DIVV.D V1, V2, V3 V1 = V2 ÷ V3 Vector ÷ Vector 
DVIVSV.D V1, F0, V2 V1 = F0 ÷ V2 Scalar ÷ Vector 
DVIVVS.D V1, V2, F0 V1 = V2 ÷ F0 Vector ÷ Scalar 
LV V1, R1  Load vector 

register v1 from 



memory 
starting at 
address R1 

SV R1, V1  Store vector 
register V1 into 
memory 
starting at 
address R1 

LVWS V1, (R1, R2)  Load V1 from 
address at R1 
and stride at R2 
as R1 + i × R2 

SVWS (R1, R2), V1  Store with 
stride 

LVI V1, (R1 + V2)  Load V1 with 
vector whose 
elements are at 
R1 + V2(i) 

SVI (R1+V2), V1  Store V1 to a 
vector whose 
elements are 
R1+V2(i) 

CVI V1, R1  Create an index 
vector by 
storing values i 
× R1 into V1 

 
Although vector instructions are dependent on the type of 

processor used, there is a general set of operations used by 
all vector processors that are specific to vector operations. 
The table above lists some of the most common sets of 
vector instructions used in for the VMIPS processor 
developed in 2001. Note: the VMIPS processor contains 
Floating Point Multiply, Add and Divide components, an 
Integer Add/Shift and a Logical component. 

 
; Load vector from memory 
LV V1, R1 
; Multiply this vector by a scalar 
; And store result as V2 
MULVS.D V2, V1, F0 
; Load another vector from memory 
LV V3, R2 
; Add and store result as V4 
ADDV.D V4, V2, V3 
; Store the result back into memory 
SV R3, V4 

 
Figure 17.  Sample code written in the VMIPS Instruction Set 

C. Vector Processors In Use 
Because of their capacity to run large instruction sets in 

parallel computers, vector processors are ideal for processing 
or comparing large sets of data. For example, algorithms 
used for string processing and cryptography can be used for 
pattern recognition in biomedical research, such as finding 
repetitions in DNA or RNA sequences [16]. 

Vector Processors are not limited to data-processing 
supercomputers — its use has found its way into consumer 
electronics like video game consoles. The Cell Processor, 
developed by Sony in collaboration with Toshiba, is hybrid 
of vector-scalar processor used in the PlayStation 3 [17]. 

 

V. CONCLUSIONS 
A memory consistency model for a system with 

distributed shared memory provides an overview of how 
memory operations should appear to behave. Some of these 
consistency models can be very strict — that is, adhere to 
one specific condition — or relaxed — which takes 
advantage of abstractions, such as synchronization, to 
determine how and when shared memory should be 
accessed. 

General Purpose Computing on GPUs work by passing 
large amounts of individual data from the CPU to the GPU 
via the Graphics Pipeline and then parallelizing the 
computation. This insight of passing non-graphical, general 
computation has advanced the mere GPU from a simple 
extension for processing onscreen graphics, to become the 
more versatile and high-performance processor used in a lot 
of today's modern computing. 

Unlike traditional scalar CPUs, Vector Processors are 
parallel computers designed to operate on an entire vector in 
one instruction. They reduce the fetch and decode bandwidth 
when accessing instructions in memory, and their 
architecture supports instruction sets that operate on vectors 
stored in FIFO registers. Originally founded by Seymour 
Cray in the early 70s, Vector Processors have since found 
their way to modern supercomputers and consumer 
electronics. 
 

REFERENCES 
[1] G. Kourosh. "Memory Consistency Models for Shared-Memory 

Multiprocessors," Standford University Technical Report CSL-TR-
95-685. 1995. 

[2] J. Protic, I. Tartalja and M. Tomasevic, "Memory consistency models 
for shared memory multiprocessors and DSM systems," Proceedings 
of 8th Mediterranean Electrotechnical Conference on Industrial 
Applications in Power Systems, Computer Science and 
Telecommunications (MELECON 96), Bari, 1996, pp. 1112-1115 
vol.2. 

[3] G. Radhika, et al. "Consistency Models in Distributed Shared 
Memory Systems," International Journal of Computer Science and 
Mobile Computing, Vol. 3, Issue 9, pg. 196-201. 2014. 

[4] A. Kshemkalyani, et. al. "Distributed Shared Memory," Distributed 
Computing: Principles, Algorithms and Systems, Cambridge 
University Press. 2008. 

[5] J. Protic, M. Tomasevic and V. Milutinovic, "Distributed shared 
memory: concepts and systems," in IEEE Parallel & Distributed 
Technology: Systems & Applications, vol. 4, no. 2, pp. 63-71, 1996. 

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. 
Phillips, "GPU Computing," in Proceedings of the IEEE, vol. 96, no. 
5, pp. 879-899, May 2008. 

[7] H. Gamaarachchi, M. Fawsan, F. Fasna and D. Elkaduwe, "User-
friendly interface for GPGPU programming," 2017 6th National 
Conference on Technology and Management (NCTM), Malabe, Sri 
Lanka, 2017, pp. 99-104. 

[8] NVIDIA. (2017). What Is GPU-Accelerated Computing? [Webpage]. 
Available http://www.nvidia.com/object/what-is-gpu-computing.html 

[9] L. Wei. (2005). A Crash Course on Programmable Graphics 
Hardware [PDF]. Available 
http://graphics.stanford.edu/~liyiwei/courses/GPU/paper/paper.pdf 

[10] W. Mark, R. Glanville, et al. "A system for programming graphics 
hardware in a c-like language", ACM Trans. Graph. 22, 3, 896-907. 
2003. 



[11] M. Harris. (2005). General-purpose computation using graphics 
hardware [Website]. Available http://www.gpgpu.org/ 

[12] F. James and M. Steve. "Using Multiple Graphics Cards as a General 
Purpose Parallel Computer : Applications to Computer Vision," 
University of Toronto, Department of Electircal and Computer 
Engineering, Canada. 2004. 

[13] A. Eman, et al. (2012). Vector Processors [PDF]. Available 
https://www.cs.uic.edu/~ajayk/c566/VectorProcessors.pdf 

[14] J. Hennessy, et al. "Computer Architecture, A Quantitative 
Approach," Morgan Kaufmann. 1990. 

[15] R. Kirchner and U. Kulisch, "Arithmetic for vector processors," 1987 
IEEE 8th Symposium on Computer Arithmetic (ARITH), Como, 
Italy, 1987, pp. 256-269. 

[16] P. David. (1998). Lecture 7: Vector Processing [PDF]. Available 
https://people.eecs.berkeley.edu/~pattrsn/252S98/Lec07-vector.pdf 

[17] A. Brian, et al. (2002). Vector Processors [PPT]. Available 
www.cct.lsu.edu/~scheinin/Parallel/VectorProcessors.pp

 


